What are PV diagrams?

Consider a gas sealed in a container with a tightly fitting yet movable piston as seen below. We can do work on the gas by pressing the piston downward, and we can heat up the gas by placing the container over a flame or submerging it in a bath of boiling water. When we subject the gas to these thermodynamics processes, the pressure and volume of the gas can change.

A convenient way to visualize these changes in the pressure and volume is by using a Pressure Volume diagram or PV diagram for short. Each point on a PV diagram corresponds to a different state of the gas. The pressure is given on the vertical axis and the volume is given on the horizontal axis, as seen below.

Every point on a PV diagram represents a different state for the gas (one for every possible volume and pressure). As a gas goes through a thermodynamics process, the state of the gas will shift around in the PV diagram, tracing out a path as it moves (as shown in the diagram below).

Being able to decode the information shown in a PV diagram allows us to make statements about the change in internal energy Delta UΔUdelta, U, heat transferred QQQ, and work done WWW on a gas. In the sections below, we'll explain how to decipher the hidden information contained in a PV diagram.

Thank You!!!

For More You Can Check Operation Management Service Video



You May Like